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Abstract

In this paper, we present a fractal model for the starting pressure gradient for Bingham fluids in porous media based on the fractal
characteristics of pores in the media and on the capillary pressure effect. Every parameter in the proposed models has clear physical
meaning, and the proposed model relates the starting pressure gradient of Bingham fluids to the structural parameters of porous media,
the yield stress, the capillary pressure parameters and the fractal dimensions of porous media. The model predictions from the present
model for the starting pressure gradient are in good agreement with the available expression Eq. (2). The results also show that at smaller
radii ð�r < 0:3 mmÞ and low porosity (/ < 0.3), the capillary pressure has the significant influence on the starting pressure gradient in por-
ous media and thus cannot be neglected. However, at high porosity, the starting pressure gradient is primarily produced by the shear
stress and the contribution to the starting pressure gradient from the capillary pressure is negligible.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Considerable evidence from laboratory experiments and
field tests indicate that certain fluids in porous media exhi-
bit a Bingham-type non-Newtonian behavior [1,2]. The
studies of flow behavior for Bingham plastic fluids in por-
ous media have steadily received much attention in the past
[3–6]. Typical Bingham fluids include paint, slurries, pastes,
food substances, heavy oil as well as foams. Wu et al. [7]
presented an integral analysis method for single phase
Bingham flow and a Buckley–Leverett type analytical solu-
tion for two-phase immiscible displacement with Bingham
non-Newtonian fluids. They also developed a numerical
model for single- and multi-phase Bingham fluid flow
through porous media by suitably modifying a general-pur-
posed multi-phase reservoir simulator. Blackery and Mit-
soulis [8] numerically studied the creeping flow of a
Bingham plastic around a sphere contained in a cylindrical
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tube. Roquet and Saramito [9] performed the numerical
simulation on the steady flow of a yield stress fluid around
a cylinder. Balhoff and Thompson [10] simulated the Bing-
ham fluid flow through axis-symmetrical constricted duct
by the finite element method (FEM).

The rheology equation for a Bingham plastic is
s ¼ s0 � l _c [11], where s is shear stress, s0 is the yield stress
which is stress that must be exceeded for flow to begin, l is
the Bingham plastic viscosity and _c is the shear rate.

Prada and Civan [12] obtained the following empirical
correlation for saturated brine through typical sandstones,
Brown sandstones and sand-packs as

k ¼ 16ðK=lÞ�0:8 ð1Þ

where k is the starting pressure gradient, and 16 and �0.8
are empirical constants. Eq. (1) indicates that the starting
pressure gradient k is a function of permeability K of a por-
ous medium and the viscosity l of fluid.

Wang et al. [13] developed a theoretical expression for
the starting pressure gradient for heavy oil flow in porous
media
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It can be seen from Eq. (2) that the starting pressure gradi-
ent k is directly proportional to yield stress s0 of heavy oil,
porosity / and inversely proportional to the permeability
of porous media. In Eqs. (1) and (2), the permeability is
usually determined by other methods such as numerical
solutions and experimental measurements.

Since 1980s, the fractal geometry theory [14] has been
used as a tool in many disciplines to characterize irregular
or disordered objects [14–16] such as coast lines, clouds and
islands, roughness of surfaces, sandstone pores [17,18],
fracture surfaces of metal [19], and granular materials
[20] etc. The pores and their distributions in porous media
are analogous to islands or lakes on earth and to contact
spots on engineering surfaces. Therefore, it is possible to
model the transport properties such as flow resistance
and permeability for flow in porous media by fractal geom-
etry theory. Fractal geometry theory has been proven to be
powerful means for analysis of porous media [17,21–25]. In
the light of this point, Yu et al. [23,24] proposed a fractal
geometry model for permeability of porous media and their
model has been shown to be suitable not only for particle
porous media [23] but also for porous fabrics [24]. How-
ever, their model was for Newtonian fluid and was not
involved in the starting pressure gradient for Bingham flu-
ids in porous media.

In this paper, based on the basic fractal characters of
microstructures of porous media, a fractal model for the
starting pressure gradient for Bingham fluids in porous
media, which accounts for the capillary pressure, is derived.
The model predictions are then compared with those pre-
dicted by the available expression Eq. (2).
2. The basic theory for fractal porous media

It has been shown that the cumulative size distribution
of pores in porous media follows the fractal scaling law
[23,24]:

NðL P rÞ ¼ rmax

r

� �Df

ð3Þ

where rmax is the maximum pore radius, and Df is deter-
mined by

Df ¼ dE �
ln /

lnðrmin=rmaxÞ
ð4Þ

where / is porosity, 1 < Df < 2 is pore area fractal dimen-
sion in two dimensions. Eq. (4) indicates that the pore area
fractal dimension increases with the increase of porosity,
and Df approaches its possible maximum value of 2 as
porosity / tends to 1. This is consistent with the physical
situation because when porosity / = 1, this means that a
plane is completely occupied by pores, leading to the
dimension of 2. In Eq. (4), rmin and rmax are the minimum
and maximum radii of pores, respectively. In general, the
ratio is rmin/rmax < 10�2 in porous media.

Differentiating Eq. (3) with respect to r results in the
number of pores whose radii are within the infinitesimal
range r to r + dr,

�dN ¼ DfrDf
maxr�ðDfþ1Þdr ð5Þ

In Eq. (5), �dN > 0, which implies the number of pores de-
creases with the increase of pore size.

The fractal scaling law for the tortuous capillaries in
porous media is [25]

L ¼ LDT
0 ð2rÞ1�DT ð6Þ

where r is the radius of pore/capillary. L0 and L are the
straight distance and actual length of a tortuous capillary,
respectively, and L P L0. DT is the fractal dimension for
tortuosity, 1 < DT < 2 in two dimensions and 1 < DT < 3
in three dimensions. The tortuosity fractal dimension de-
creases with the increase of porosity. DT = 1 represents a
straight capillary and L = L0. When porosity is unity, this
implies that there is no solid particle in a volume and the
streamlines are straight and thus DT = 1. A higher value
of DT corresponds to a highly tortuous capillary. DT = 2
and DT = 3 correspond to a so highly tortuous line that fills
a two-dimensional plane and a three-dimensional space,
respectively. Eq. (6) also shows that the larger the capillary
r, the shorter the capillary length L. This is consistent with
the physical situation.

For a given capillary (i.e. keep r unchanged), differenti-
ating Eq. (6) yields

dL ¼ LDT�1
0 ð2rÞ1�DT DTdL0 ð7Þ

The structural parameters for porous media are [23]

L0 ¼ �r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pffiffiffi

3
p
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s
ð8Þ

and
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4
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In Eqs. (8) and (9), �r is the average radius of particles in
porous media.

The fractal dimension DT for tortuous capillaries in por-
ous media can be expressed as [25]

DT ¼ 1þ ln C

ln L0

2rav

ð10Þ

where C and rav are the average tortuosity (defined by
C = L/L0) of tortuous capillaries and the average pore
radius, respectively.

A correlation between the average tortuosity of flow
path was given by [26]

C ¼ 1þ 0:41 lnð1=/Þ ð11Þ
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which was obtained by the experiments on flow through
beds packed with spherical particles.

In porous media, the pore sizes are non-uniform. Kong
[27] gives the average pore radius

rav ¼
XN

i¼1

N ir4
i

 !1
4

ð12Þ

where Ni (i = 1, 2, . . . , N) is the number of the capillaries
with the radius ri. Usually, Ni is unknown and the average
pore radius cannot be found directly from Eq. (12). How-
ever, due to Eq. (5), the average pore radius can be calcu-
lated from

rav ¼ �
Z rmax

rmin

r4 dN
� �1=4

¼ rmax

Df

4� Df

� �1=4

1� rmin

rmax

� �4�Df

" #1=4

ð13Þ

where 1 < Df < 2 in the two-dimensional space, 4 � Df > 2,
rmin/rmax < 10�2, so rmin=rmaxð Þ4�Dk � 1. Then Eq. (13) can
be reduced to

rav ¼ rmax

Df

4� Df

� �1=4

ð14Þ

Eq. (14) presents a fractal model for the average pore ra-
dius in porous media.

3. Fractal models for the starting pressure gradient with
capillary pressure included for Bingham fluids in porous

media

The flow rate through a single capillary for Bingham flu-
ids is given by [11]

q ¼ pr4

8l
� dp

dL

� �
1� 4

3

2s0=r
�dp=dL

� �
þ 1

3

2s0=r
�dp=dL

� �4
" #

¼ pr4

8l
� dp

dL

� �
1� 2s0=r
j � dp=dLj

� ��

� 1

3

2s0=r
j � dp=dLj 1� ð2s0=rÞ3

�dp=dLj j3

 !#
ð15Þ

In Eq. (15), the starting pressure gradient k ¼ 2s0

r is ob-
tained when we let q = 0. For simplicity, according to the
same approximate method as that in derivation of general-
ized Darcy’s law for Bingham fluids [27], we keep the first
term in the square bracket in Eq. (15) and omit the second
term. Then Eq. (15) can be reduced to

q ¼ pr4

8l
� dp

dL

� �
1� 2s0=r
j � dp=dLj

� �
ð16Þ

Eq. (16) still satisfies the flow rate q = 0 when jdp/dLj = k.
For plane-parallel flow, the pressure p decreases with the

increase of the length L, so dp/dL < 0, Eq. (16) can be
rewritten as
q ¼ pr4

8l
� dp

dL

� �
1þ 2s0=r

dp=dL

� �
ð17Þ

Because of the fractal characteristics of tortuous capil-
lary/streamline, inserting Eq. (7) into Eq. (17) yields

qðrÞ ¼ p � r4Dp
8lDTL0

L0

2r

� �1�DT

� p � r3s0

4l
ð18Þ

If the capillary pressure pc is taken into account, Eq. (18)
can be rewritten as

qðrÞ ¼ p � r4ðDp þ DpcÞ
8lDTL0

L0

2r

� �1�DT

� p � r3s0

4l
ð19Þ

where Dpc < 0 when the capillary pressure blocks the fluid
flow through tortuous capillaries; otherwise Dpc > 0.

The capillary pressure difference is given by [28]

DP c ¼
F r cos h

2r
1� /

/
ð20Þ

In Eq. (20), r is surface tension of wetting fluid, h is contact
angle between liquid and solid, and F is shape factor
depending on geometry of a medium and on flow direction.

It has been shown that the pore size distribution in por-
ous media follows the fractal power law, so the total flow
rate Q through the cross-section can be obtained by inte-
grating Eq. (19) over the entire range of pore sizes

Q¼�
Z rmax

rmin

qðrÞdNðrÞ

¼ pDfrDf
maxDp

8lLDT
0 21�DT DTðDT�Dfþ3Þ

rDT�Dfþ3
max 1� rmin

rmax

� �3þDT�Df

" #

þ pF rcoshð1�/ÞDfr2þDT
max

25�DTlDTLDT
0 /ð2þDT�DfÞ

1� rmin

rmax

� �2þDT�Df

" #

� ps0DfrDf
max

4lð3�DfÞ
r3�Df

max 1� rmin

rmax

� �3�Df

" #

ð21Þ

In general, rmin/rmax < 10�2 in porous media, and
1 < DT < 2, 1 < Df < 2 in two dimensions, 3 + DT � Df > 1,

2 + DT � Df > 1 and 3 � Df > 1, so rmin

rmax

� �3þDT�Df

� 1,

rmin

rmax

� �2þDT�Df

� 1 and rmin

rmax

� �3�Df

� 1. It follows that Eq.

(21) can be reduced to

Q ¼ pDfr3þDT
max

8lLDT�1
0 21�DT DTð3þ DT � DfÞ

� Dp
L0

þ F r cos hð1� /Þð3þ DT � DfÞ
2L0/ð2þ DT � DfÞrmax

�

� LDT�1
0 DTð3þ DT � DfÞs0

2DT�2ð3� DfÞrDT
max

�
ð22Þ
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Fig. 1. The starting pressure gradient contribution from shear stress
versus porosity between the present model Eqs. (30) and (2) [13].
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The total cross-sectional area of porous media is

A ¼ Ap

/
¼
�
R rmax

rmin
pr2 dN

/

¼ pDf

/ð2� DfÞ
r2

max 1� rmin

rmax

� �2�Df

" #
ð23Þ

where Ap is the total pore area of a cross-section.
The porosity is related to the fractal dimension for pore

spaces and microstructural parameters by [29]

/ ¼ rmin

rmax

� �2�Df

ð24Þ

Substituting Eq. (24) into Eq. (23), we obtain

A ¼ pDf

/ð2� DfÞ
r2

maxð1� /Þ ð25Þ

Dividing Eq. (22) by Eq. (25) gives the average (superficial)
velocity for Bingham fluids in porous media

V ¼ r1þDT
max /ð2� DfÞ

lLDT�1
0 24�DT DTð3þ DT � DfÞð1� /Þ

� Dp
L0

þ F r cos hð1� /Þð3þ DT � DfÞ
2L0/ð2þ DT � DfÞrmax

�

� LDT�1
0 DTð3þ DT � DfÞs0

2DT�2ð3� DfÞrDT
max

�
ð26Þ

When the yield stress s0 = 0, the fluid becomes Newtonian.
According to Eqs. (22) and (26), and we can obtain the flow
rate and velocity for Newtonian fluids with capillary pres-
sure included:

Q ¼ pDfr3þDT
max

8lLDT�1
0 21�DT DTð3þ DT � DfÞ

� Dp
L0

þ F r cos hð1� /Þð3þ DT � DfÞ
2L0/ð2þ DT � DfÞrmax

� �
ð27Þ

V ¼ r1þDT
max /ð2� DfÞ

lLDT�1
0 24�DT DTð3þ DT � DfÞð1� /Þ

� Dp
L0

þ F r cos hð1� /Þð3þ DT � DfÞ
2L0/ð2þ DT � DfÞrmax

� �
ð28Þ

In Eqs. (27) and (28), the term F r cos hð1�/Þð3þDT�Df Þ
2L0/ð2þDT�Df Þrmax

is also
called the starting pressure gradient if the contact angle
h > p/2, and this means that the starting pressure gradient
also exists for Newtonian fluid flow in porous media as the
contact angle h > p /2.

Let Q = 0 in Eq. (22) or V = 0 in Eq. (26), the starting
pressure gradient for Bingham fluids in porous media is
obtained as follows:

k ¼ LDT�1
0 DTð3þ DT � DfÞs0

2DT�2ð3� DfÞrDT
max

� F r cos hð1� /Þð3þ DT � DfÞ
2L0/ð2þ DT � DfÞrmax

ð29Þ

¼ k1 � k2

where k1 ¼
LDT�1

0 DTð3þ DT � DfÞs0

2DT�2ð3� DfÞrDT
max

ð30Þ

k2 ¼
F r cos hð1� /Þð3þ DT � DfÞ

2L0/ð2þ DT � DfÞrmax

ð31Þ
Eq. (29) is the fractal analytical model for the starting pres-
sure gradient for Bingham fluids flow in porous media, in
which the capillary pressure effect is taken into account.
Eq. (30) represents the starting pressure gradient contribu-
tion from the shear stress, and Eq. (31) denotes the starting
pressure gradient contribution from the capillary pressure.
It is seen from Eq. (29) that the starting pressure gradient k
is related not only to the yield stress s0 but also to the struc-
tural parameters of porous media (DT, Df, L0 and rmax) as
well as the capillary pressure parameters (r, F and h).
Though Eqs. (1) and (2) appear simple, they have an un-
known permeability and do not include the effect of capil-
lary pressure, microstructural parameters on the starting
pressure gradient. Therefore, the present model Eq. (29)
clearly reveals the physical mechanisms for the starting
pressure gradient for Bingham fluids in porous media.
4. Comparisons

This section is devoted to verifying the validity of the
proposed model by comparisons with the available expres-
sions. The parameters Df, L0, rmax and DT in Eq. (29) are
determined by Eqs. (4), (8), (9) and (10), respectively.
s0 = 0.1, F = 4 [28] and r = 0.044 N.m, h = 570 [30] are
used in Eq. (29) in the present comparisons.

The permeability K of porous media in Eq. (2) are calcu-
lated by the follow fractal permeability expression [31]

K ¼ 2DT�4 /L1�DT
0

DT

ð2� DfÞr1þDT
max

ðDT � Df þ 3Þð1� /Þ ð32Þ

Figs. 1–3 compare fractal model predictions by Eq. (30)
with Eq. (2) [13] for the starting pressure gradient contribu-
tion from the shear stress for Bingham fluid flow in porous
media at different porosities, radii and yield stresses,
respectively. It is seen that good agreement between the
two models is obtained, and this verifies the validity of
the proposed fractal model Eq. (30).
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When the average radius ð�r ¼ 0:3 mmÞ of particles keeps
unchanged, Fig. 4 compares the starting pressure gradient
contributions from the shear stress by Eq. (30) and that
from the capillary pressure by Eq. (31), respectively. The
figure shows that the starting pressure gradient contribu-
tion k2 from the capillary pressure decreases rapidly with
the increase of porosity, and k2 ? 0 when / > 0.6. There-
fore, the effect of capillary pressure on the starting pressure
gradient can be neglected at high porosity. However, at low
porosity, the capillary pressure has the significant influence
on the starting pressure gradient, and this reveals that the
capillary pressure may be an important physical mecha-
nism for the starting pressure gradient in porous media at
low porosity. This may be interpreted as that at low poros-
ity, the diameters of capillaries become very small, and the
molecular force may dominate the resistance for flow and
thus cause the flow resistance increase drastically. This,
therefore, may need the larger starting pressure gradient
to drive the flow in porous media at low porosity than at
high porosity.
Fig. 5 again compares the starting pressure gradient
contributions from the shear stress by Eq. (30) and that
from the capillary pressure by Eq. (31) at different porosi-
ties and at different particle sizes. We can see from Fig. 5
that the starting pressure gradients from both the shear
stress (k1) and from the capillary pressure (k2) decrease rap-
idly with the increase of radii of particles, and the contribu-
tion from the capillary pressure may be much less than that
from the shear stress when �r > 0:4 mm. Therefore, the
effect of capillary pressure on the starting pressure gradient
may be neglected at larger radii of particles. However, at
smaller radii ð�r < 0:3 mmÞ and low porosity (/ < 0.3) (see
Figs. 5a and b), the capillary pressure has the significant
influence on the starting pressure gradient in porous media
and thus cannot be neglected. This phenomenon may be
explained that the smaller radii of particles in a porous
medium with usually correspond to the smaller pore sizes,
leading to the higher capillary pressure and higher starting
pressure gradient. However, at high porosity the starting
pressure gradient from the shear stress is much larger than
that from the capillary pressure, see Fig. 5c. This implies
that at high porosity the starting pressure gradient is pri-
marily produced by the shear stress.

The present model for the starting pressure gradient in
porous media is analytically related to the yield stress s0,
the structural parameters (L0 and rmax), the capillary pres-
sure parameters (r, F and h) and the fractal dimensions (DT

and Df), and the physical principles are fully revealed.
However, the conventional models such as Eqs. (1) and
(2) contain one or more empirical constants with no phys-
ical meaning, and these models cannot fully reveal the
underlying physical mechanisms for the starting pressure
gradient in porous media. In addition, in the conventional
methods, the permeability needs to be solved by experi-
ments or numerical simulations or by other empirical cor-
relations. Whereas there is no empirical constant and every
parameter in the proposed model has specific physical sig-
nificance, and the starting pressure gradient based on the
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fractal geometry theory is directly expressed as a function
of the microstructural parameters of porous media and
properties of fluid.

5. Conclusions

We have shown the fractal model for the starting pres-
sure gradient for Bingham fluid flow in porous media.
The proposed model accounts for the effects of the shear
stress and capillary pressure on the starting pressure gradi-
ent. Every parameter in the proposed fractal model has
clear physical meaning. The proposed model relates the
starting pressure gradient of Bingham fluids in porous
media to the structural parameters of porous media, the
yield stress, the capillary pressure parameters and the frac-
tal dimensions of porous media. While conventional mod-
els cannot fully reveal the physical mechanisms for the
starting pressure gradient in porous media. The present
results show that at smaller radii ð�r < 0:3 mmÞ and low
porosity (/ < 0.3), the capillary pressure has the significant
influence on the starting pressure gradient in porous media
and thus cannot be neglected. However, at high porosity
the starting pressure gradient is primarily produced by
the shear stress and the contribution to the starting pres-
sure gradient from the capillary pressure is negligible.
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